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Abstract The elecmmagnetic (EM) waves associated with the polariton modes of bulk 
dielectricsare quantizd using a procedure thaf accounts for both the EM and maw fields. 
The interaction of electrons with these polari‘pn fields is described using the minimal coupling 
( e / m * ) A .  p interaction Hamiltonian where A is the msverse vector potendal’operator of the 
polariton held, p the elecmnic momentum and m* its effective mass. The elecmn-polariton 
interaction in the bulk is demonstrated to be closely linked to the tehaviow of the polariton 
p u p  and phase velocities. The same quanulation procedure is then employed to describe the 
EM fields mssociated with the interface polaritons of a GaAsiAIAs quantum well system. The 
coupling leads to a dependence of the scattering rate on the group and phase velocities of the 
surface modes, just as it does for the bulk excitations. In contrast to the case in the bulk. it is 
shown that these modes am important for relaxing the elecuon energy in narrow wells. 

1. Introduction 

The.coupling of electromagnetic (EM) waves with dipole active excitations in dielectrics 
leads to dressed states known as polaritons. The properties of these normal modes are now 
well understood. Mills and Burstein [I], Ushioda and Loudon [2], and Cotcam and Tilley 
[31 present a thorough review of their properties both in the bulk and in the presence of 
surfaces. 

The quantization of polaritons was first described by Hopfield [4], The method has now 
become standard and involves a Bogoliubov transformation from the normal coordinates of 
the EM and matter fields to those of the dressed states. Recently, Huttner et ai €51 have re- 
examined the Hopfield model from a canonical perspective which resulted in an interesting 
sum-rule involving the group and phase velocities of the polaritons. Their results are closely 
related to those of Blow et a1 [6]. These authors, however, were primarily concemed with 
the quantum optical applications of the modes. Field quantization in dispersive media is 
currently an important area of investigation in quantum optics that will inevitably overlap 
with condensed matter physics. In this paper, the motivation lies in understanding the role 
played by the polaritons in relaxing the energy of electrons both in bulk and low-dimensional 
systems. 

The paper is organized as follows. In section 2 a simple quantization procedure for 
polaritons in the bulk, starting from the field Hamiltonian for an EM wave in a dispersive 
dielectric, is outlined. This procedure is shown to be equivalent to the HopfieId model and 
leads to the sum-rule recently obtained [5].  The interaction of electrons with these bulk 
modes is discussed first and its significance is assessed for the typical scattering wavevectors 
encountered in transport phenomena. The formulation for the bulk is, however needed, not 
just for its intrinsic value in obtaining quantized fields in matter, but also in demonstrating the 
importance of the roles played by the asymptotic properties of the group and phase velocity 
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of the excitations. Section 3 extends the above formalisms to a single-quantum-well system 
(GaAs/AlAs), and specifically, to the interface polaritons. The interaction of electrons with 
these interface modes is then described quantitatively. The same considerations that apply 
to the bulk modes lead to very different conclusions when applied to the interface modes. In 
fact, for small well widths these modes dominate the electron energy relaxation rate. This 
conclusion is again based on the behaviour of the group and phase velocities together with 
the dielectric function at the wavevectors of interest. Section 4 contains the conclusions 
and comments. 

N C Consranrinou et ul 

2. Quantization of bulk polaritom 

The quantization of polaritons is briefly dsecribed in this section together with an outline 
account of their coupling to electrons. The quantization procedure starts by considering an 
EM field in a simple dispersive dielectric. The field Hamiltonian, which may be obtained 
from general considerations, is given by the following specml sum 171 

In the above Ej is the electric field, Bj the magnetic field, c the velocity of light in vacuo, 
e (@)  the frequency dependent dielectric function (assumed isotropic and real) and €0 the 
permittivity of free space. The sum is over all the polariton modes. Their dispersion relation 
is given by [I] 

wjZ~(wj) = CZkZ (2) 

with k the mode wavevector. 

form viz. 
The electric field operator associated with the jth polariton branch is written in quantized 

where the Boson operators satisfy the usual commutation relations 

[Uj(k). Uj,(k')l = SjjfS(k - k') (4) 

and Eoj(k) are mode amplitudes to be determined via the canonical procedure. The 
magnetic field operator may simply be written down as [8] 

v x kjw = -(a/at)Bj(r). (5) 

On substitution of (3) and (5) into (I) and expressing the field Hamiltonian in canonical 
form 
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the mode amplitudes reduce to 

~ o j ( k )  = ( [ ~ ~ w j / 2 ( 2 n ) ~ ~ ~ ~ ( o ~ ) ~ u ~ ~ / u ~ ) } ~ / ~ e ~ ’  (7) 

where ey’ is a unit vector in~which the label j designates both the branch and the mode 
polarization; U;) and U? the goup and phase velocities of the mode. To obtain the above, 
the following identity is employed 

(8 )  I + [oj/z€(wj)i[a~(w)/aoi,=, = up (1) /up U) . 

The amplitudes given in equation (7) are the three-dimensional analogues of those obtained 
by Blow et a1 [6] for the special case of one dimension, and are derived here for the first 
time. Furthermore, using the quantized field in equation (7). the following tommutation 
relation can be established (after some algebra) between the vector potential A(T) and the 
electric displacement field fij(r) associated with the field. We have 

where k,(t-) = - ( a / a r ) A j ( T )  and hj(~) = EOC(O~)~~(T). The sum over the ratio of 
the velocities is unity [5] demonstrating that &T) and -h(v)  are conjugate variables 
in analogy with the vacuum situation (in the Coulomb~gauge).~ In (9) S ~ ( T  - T‘) is the 
transverse delta-function [9] involving the Cartesian coordinates i and if. The emergence of 
the group and phase velocities in this manner has important consequences as regards their 
interaction with electrons. 

The interaction of electrons with these polariton modes is now described. As a specific 
example, phonon-polaritons are considered, although the arguments apply to other types of 
polaritons, (e.g. plasmon-polaritons and coupled phononfplasmon-polaritons), via a suitable 
redefinition of the dielectric function. The appropriate dielectric function here is 

E(@) = €,(U2 - w?)/(oZ -a$). (10) 

In the above cm is the high-frequency dielectric constant with 0~ and the zonecentre LO 
and TO optical phonon frequencies. Thedispersion relation obtained by substituting (10) into 
(2) is well known [ I ]  and consists of a ‘photon-like’ upper branch (t) and a ‘phonon-like’ 
lower branch (-) where the wavevectors of interest are of order ko = mem /e. 

The interactions of electrons with the EM wave associated with the polariton occurs via 
the usual minimal coupling (e/m*)A.p Hamiltonian, with m* the effective mass and p the 
momentum of the electron. Explicit evaluation leads to the result that the scattering rate 
rj, calculated via F e d ’ s  golden rule, is then proportional to 

.l/Z 

Typical scattering wavevectors art of the order 1101 q = ( 2 m * 4 T ~ ) ” ~  N 0.4 x 103ko; 
hence for these wavevectom, the scattering from the lower branch is negligible since 

U;-’ 1 

$1 E ( @ - )  
-- + 0 (within a few ko). 
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We can also show that the interaction of electrons with the ‘photon-like’ upper branch is 
negligible too, but for different reasons. In this case, for typical scattering wavevectors, 
the ratio of the velocities is unity, E(w+) Y em and U+ Y 0.4 x lo3*. The argument 
involving up and up transparently leads to the conclusion that electron energy relaxation 
via the emission of bulk polaritons may safely be ignored. By contrast as we show below, 
the asymptopic properties of ug and up are drastically different in the context of interface 
polaritons leading to significant contribution to the relaxation rates. 

N C Constantinou et a1 

3. Interaction of electrons with interface polaritom 

The formalism developed in the previous section can now be applied to the interface 
polaritons of a layered system. It is well known that such a system may support a rich 
spectrum of polariton excitations, both guided and interface modes [2,3]. The guided 
modes interact with elecvons only very weakly for precisely the same reasons as given 
for the bulk modes in section 2. On the other hand, the interface modes, often referred to 
in the literature as Fuchs-Kiewer (FK) modes 1111 certainly cannot be ignored as is now 
demonstrated. 

As a concrete example, the formalism developed in section 2 will be extended in order 
to describe the interaction of electrons in a GaAs/AlAs double heterojunction (DH). In what 
follows labels 1 and 2 refer to AlAs (121 > d/2) and GaAs (121 < d/2) respectively, with 
d the well width. It is assumed that each region may be described adequately by its bulk 
dielectric function. viz. 

with &; the high-frequency dielectric constant, and uti and the zone centre LO and TO 
phonon frequencies of material i. The dispersion relation of these FK interface polaritons is 
simply obtained by applying standard electromagnetic boundary conditions at the interfaces 
and seeking decaying solutions on either side of the boundaries. This dispersion relation is 
expressible as [2,3,1 I]  

where S and A denote symmetric and antisymmhc solutions, the labelling of the modes 
being consistent with that of other investigations such as those of Wendler 1121 and Mori 
and Ando [13]. In the above the wavevectors qi are given by 

with 411 the wavevector in the plane. For the wavevectors of interest in transport, which are 
well away from the light-line, it is safe to consider the so-called unretarded limit (4; = 411) 
although, initially, the discussion is kept general. Both regions of the dispersion c w e  are 
depicted in figure 1. 

It is now straightforward to quantize these modes. The electric field is written in 
quantized form 
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Figure 1. The four FK interface polariton branches in a GaAsIAIAs DH. The relevant parameters 
are hum = 50.09 meV, Awl = 44.88 meV, h o u  = 36.25 meV. h m  = 33.29 meV. 
em, = 8.16, f-2 = 10.89 where 1 (2) refers to AIAs.(GaAs). The inset to the figure shows 
the small 411 region of the dispersion curves in the vicinity of the light-line ford = 1 @m. The 
horizontal scaie is in uniu of -IC. The labels s (A) refer w the symmetric (antisymmetric) 
modes. 

where, of course, now we sum over the in-plane wavevector qll which is the conserved 
wavevector by symmetry, and rII is the in-plane coordinate. The index j now refers to either 
the antisymmetric (A) or symmetric (s) branch. The magnetic field operator IS obtainable 
from (16) using (5) and hence the total energy of the modes can again be determined from 
(1). On expressing this in canonical form, the mode amplitudes Ea, are evaluated. The 
concern here is with the electron-interface polariton interaction, so only the vector potential 
A(T) is quote& 

In equation (17) the amplitude is given by 



In equation (23). gj is 1 if j = s and - 1 if j = A. The group and phase velocities are of 
course defined for the surface polaritons in terms of the in-plane wavevector (U;) = wj/q11 
and uy' = [aw/aqll],,,). The group velocity of the modes can be determined analytically 
from the dispersion relation and are found to be given by 

with 

In figure 2 the ratio Ivs/upl is plotted as a function of the in-plane wavevector. It is seen 
from the figure that the dependence of this ratio on wavevector is not too different for the 
various interface modes. At large wavevectors the ratios fall off rather slowly: on the other 
hand, for small wavevectors, there is a rapid fall-off. For intermediate values, these ratios 
attain a maximum around qld = 1, which is often near the wavevector regime of interest 
in the electron-interface mode interaction. 

The analysis is now taken further by calculating the electron-interface mode interaction 
(some results have recently been presented elsewhere [ 141). The rates are calculated via the 
golden rule (assuming that only emission is possible): 

with i and f standing for the initial and final states. The ket Ikll) represents that of an electron 
with in-plane momentum fikll, whilst the ket I {q~~~j l )  describes a polariton of momentum 
hqll of branch j .  The electron states are assumed for simplicity to be those obtained 
from an infinite confining potential, although for the low-lying states this assumption is 
not too severe. Hence, on simple symmetry considerations, intersubband transitions will 
only involve the antisymmetric FK modes whereas Only symmetric FK modes contribute to 
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Figure 2. Variation of Iv,/v,/ with q11d for the symmemc FK modes (curves 
antlsymmehic FK modes (curves b). The full curves correspond to the ‘AIAs-like’ 
the b m h  culyes to the ’GaAs- l i i  modes. 

a) and the 
modes and 

intrasubband scattering. For intersubband scattering where the electron initially resides at the 
bottom of the second subband ($I = 0) the integrations involved in (26) are straightforward 
leading to 

with El = h2n2/2m;d2. The quantity ro characterizes the strength of the electron-lo 
phonon interaction in the bulk (- 8 x 10l2 s-’ for GaAs): 

ro = (e2/4~~oh)(l/c,2 - 1 /~~2) (2m;~~2 /h )”~ .  (28) 

Of course, 411 in (27) satisfies both the dispersion relation and conservation of energy and 
there are two branches which may contribute: an ‘MAS-like’ antisymmetric branch and 
a ‘GaAs-like’ antisymmetric branch (see figure 1). In figure 3 the intersubband rate is 
depicted as a function of well width. The ‘AIAs-like’ contribution is seen to dominate for 
all well thicknesses d ,  especially around 180 A where a pronounced resonance is predicted 
[141. The reason for this is easily seen with reference to equation (27) as follows. As the 
well width increases, the rate increases due to a decrease in qo. As the in-plane wavevector 
decreases further, the frequency of the ‘AIAs-like’ antisymmetric branch tends to yl. 
whence I E I  (o)l -+ w reversing the earlier trend. In other words, when the mode frequency 
approaches the TO phonon frequency of AIAs, the rate vanishes, as indeed it should. It 
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should be emphasized that this resonance in the intersubband rate is not due to retardation 
effects, but rather to the dispersion of the mode, or more precisely, to its finite group velocity 
in the non-retarded region of the dispersion curve (figure 1). This resonance is absent if 
dispersion is ignored. No such resonance is predicted for the 'GaAs-like' contribution as 
here the limiting frequency is that of the ~3 mode of GaAs. The intersubband rate for the 
'GaAs-like' antisymmetric mode increases until the subband separation equals the energy 
of the GaAs Lo phonon (corresponding to a well width of around 220 A). For larger well 
widths, the electron has insufficient energy to emit these modes. 

N C Constantinou et a1 
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Figure 3. Intra- (left-hand axis) and inter- (right-hand axis) subband transition rates by emission 
of FK antisymmetric modes and their variation with well width d.  

No analytic results are available for the intrasubband rates with the integrations involved 
in (26) having to be evaluated numerically. Figure 3 also illustrates the variation of the 
intrasubband scattering rate as a function of well width for a fixed initial electron energy of 
2hy2. Again the 'AIAs-like' symmetric branch domiqates, especially at small well widths. 
This result has recently been demonstrated by the Raman results of Tsen er a1 [ 151. In order 
to make a quantitative comparison with these results the theory needs to be taken further, for 
example by taking into account the finite depth of the well, and, more importantly, effects 
due to non-equilibrium phonons. 

4. Discussion and conclusions 

The aim of this paper has been to demonstrate that the interactions of electrons with the 
polariton modes can be presented in a unifying manner irrespective of whether they occur 
in bulk or lowerdimensional systems. For bulk systems, the interaction of electrons with 
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these modes occurs via the ( e / m * ) A  . p minimal coupling Hamiltonian, but the strengths 
are so weak that they may safely be ignored. The reason for this, as explained in section 
2, is intimately related to the group and phase velocities of the modes and the behaviour of 
the dielectric function at the wavevector regimes encountered in transport: The interaction 
of electrons with interface FK modes employed here was again (e /m*)A . p ,  in order to 
connect with the bulk results of section 2. Other investigators, for example Wendler [I21 
and Mori and Ando [13] couple the modes via a scalar potential coupling e$ analogous to 
the Frohlich interaction of the LO modes. The use of this type of interaction for polaritons 
has recently been questioned [16,17]. The results obtained by this scalar potential method 
are equivalent to those reported here and a simple-argument will demonstrate this. 

In the non-retarded limit the vector potential A may be written as 

(29) 
~ A N (i/o)V$ = -(k/o)J 

hence 

(e/cn*)p. A z (ie/o)&. v, (30) 

where v, is the group velocity of the electron and k the wavevector of the mode. For the 
interactions of interest k-v, is the frequency of the emitted mode and hence the 4 coupling 
is recovered. Nevertheless, the essence of their interactions with electrons stems from the 
properties of their group velocities, their phase velocities, and the dielectric functions of 
the media, just as it does for bulk polaritons. No such comparison can be made between 
these FK interface modes~and bulk LO phonons. The interaction of electrons with bulk and 
confined Lo phonons via the Frohlich interaction is of course strong, but it cannot be for 
exactly the same reasons. In the case of the~lpng-wavelength Lo modes E ( @ )  = 0, and their 
group velocity also vanishes (in the often used Einstein model). A simple derivation of 
the Friihlich interaction for longitudinal modes with equation (1) as the starting point has 
recently been reported by one of the present authors [IS]. 

In conclusion, a simple quantization procedure for polaritons has been presented which 
is applicable to any system in which a simple dielectric function is adequate. The group 
velocity is shown to be of importance from the outset, and the commutation relation (9) 
recently obtained by Huttner et al [5] is recovered. The interaction of electrons with bulk 
polaritons is shown to be negligible from simple considerations. These same considerations 
when applied to layered systems lead to the result that the fields associated with surface 
polaritons cannot be ignored in any calculations of electron energy relaxation, despite the 
fact that their coupling to electrons has precisely the same interaction Hamiltonian as that 
of bulk polariton modes. This is a consequence of the behaviour of the group and phase 
velocities and the dielectric functions at the large wavevectors of interest. 

A note of caution must now be made. Microscopic models 119-221 and macroscopic 
ones [23-261 demonstrate that the ‘GaAs-like’ interface mode is not a pure interface mode 
but is strongly hybridized with the. Lo modes. This is not the case for the.important ‘AMs- 
like’ mode [19]. The reason for this is that the dispersion of the U) phonons in AlAs is 
too weak to allow hybridization over the whole frequency range of the interface modes. 
Hybrids occur only in the frequency range occupied by LO modes. Hybrid behaviour 
has been ignored here as it has been in other investigations [12,13] although Ridley [241 
has recently calculated electron-optical phonon scattering rates for hybrid modes with 
frequencies in the ‘GaAs-like’ region of the dispersion curves. As has recently been 
emphasized [26] a macroscopic model which incorporates hybrid effects and accurately 
compares with microscopic displacements and frequencies is useful in order to avoid heavy 
computation. 

~ 
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Nore odded in proof. The equivdenu: in the non.reLarded limit of the A and & fomuhsms discussed in seclion 4 
has recently been dcmonsmted more ngomtsly via a uiuory vansformation (hl Bablker, N C Constantinou and 
B K Ridley Phys. Rei. B a1 press). 
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