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Abstract. The electromagnetic (M) waves associated with the polariton modes of bulk
dielectrics are quantized using a procedure that accounts for both the EM and matter fields,

. The interaction of electrons with these polariton fields is described using the minimal coupling
{e/m*)A - p interaction Hamiltonian where A js the tansverse vector potential operator of the
polariton field, p the electronic momentum and m* its effective mass. The electron—polariton
interaction in the bulk is demonstrated to be closely linked to the behaviour of the polariton

" group and phase velocities. The same quantization procedure is then employed to describe the
EM fields associated with the interface polaritons of a GaAs/AlAs quantum well systerr. The
coupling leads to a dependerice of the scattering rate on the group and phase velocities of the
surface modes, just as it does for the bulk excitations. In contrast to the case in the bulk, it is
shown that these modes are important for relaxing the electron energy in nartow wells,

1. Introduction

The coupling of electromagnetic (EM) waves with dipole active excitations in dielectrics
leads to dressed states known as polaritons. The properties of these normal modes are now
well understood. Mills and Burstein [1], Ushioda and Loudon [2], and Cottam and Tilley
[3] present a thorough review of their properties both in the bulk and in the presence of
surfaces.
“The quantization of polantons was first described by Hopfield [4]. The method has now
become standard and involves a Bogoliubov transformation from the normal coordinates of
~ the EM and matter fields to those of the dressed states. Recently, Huttner e ! [5] have re-
examined the Hopfield model from a canonical perspective which resulied in an interesting
sum-tule involving the group and phase velocities of the polaritons. Their results are closely
related to those of Blow er a/ [6]. These authors, however, were primarily concerned with
the quantum optical applications of the modes. Field quantization in dispersive media is
currently an important area of investigation in quantum optics that will inevitably overiap
with condensed matter physics. In this paper, the motivation lies in understanding the role

- played by the polaritons in relaxing the energy of electrons both in bulk and low-dimensional
systems.

The paper is orga.mzed as follows. In section 2 a simple quantization procedure for
polaritons in the bulk, starting from the field Hamiltonian for an EM wave in a dispersive
dielectric, is outlined. This procedure is shown to be equivalent to the Hopfield model and
leads to the sum-rule recently obtained [5]. The interaction of electrons with these bulk
modes is discussed first and its significance is assessed for the typical scattering wavevectors
encountered in transport phenomena. The formulation for the bulk is however needed, not
Just for its intrinsic value in obtaining quantized fields in matter, but also in demonstrating the .
importance of the roles played by the asymptotic properties of the group and phase velocity
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of the excitations. Section 3 extends the above formalisms to a single-quantum-well system
(GaAs/AlAs), and specifically, to the interface polaritons. The interaction of electrons with
these interface modes is then described quantitatively. The same considerations that apply
to the bulk modes lead to very different conclusions when applied to the interface modes. In
fact, for small well widths these modes dominate the electron energy relaxation rate. This
conclusion is again based on the behaviour of the group and phase velocities together with

the dielectric function at the wavevectors of interest. Section 4 contains the conclusions
and comments.

2. Quantization of bulk polaritons

The quantization of polaritons is briefly dsecribed in this section together with an outline
account of their coupling to electrons. The quantization procedure starts by considering an
EM field in a simple dispersive dielectric. The field Hamiltonian, which may be obtained
from general considerations, is given by the following spectral sum [7]

1 dwe(w)]
= 560 %:f [(T)ml Ef + CZB?} d3r. (1)

In the above E; is the electric field, B; the magnetic field, ¢ the velocity of light in vacuo,
€(w) the frequency dependent dielectric function (assumed isotropic and real) and ¢y the

permittivity of free space. The sum is over all the polariton modes. Their dispersion relation
is given by [1]

whe(w) = 2 @)
with &k the mode wavevector.

The electric field operator assocmted with the jth polariton branch is written in quantized
form viz.

Ei(r) = f [Eo; (k) exp(ik - T)a; (k) + HCl d°k 3
where the Boson operators satisfy the usual commutation relations
[a; k), @l (k)] = 880k — &) (4)

and Ey;{k) are mode amplitudes to be determined via the canonical procedure The
magnetic field operator may simply be written down as [8]

V x Ej(r) = —(3/80) B (r). (5)

On substitution of (3) and (5} into (I} and expressing the field Hamiltonian in canonical
form :

Ar=3 Y [ ol (e + v Q
@y
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the mode amplitudes reduce to _
Eo; (k) = {[hm,/ztzrr)%oe(wj)]vu’/v‘“}‘ﬂ ‘” kY

where e” Vis a umt vector in whu:h the label j designates both the branch and the mode

polarization; u Y and v“ ) the group and phase velocities of the mode To obtain the above
the following identity is employed: -

1 [y /26l () /0] oma ._vU)/uU} C®

The amplitudes given in equation (7) are the three-dimensional analogues of those obtained
by Blow er al [6] for the special case of one dimension, and are derived here for the first:

“time, Furthermore, using the quantized field in equation (7), the following commutation
relation can be established (after some algebra) between the vector potential A(r) and the
electric dlsplacement ﬁeld Dj (r) associated with the field. We have

W 2
[A(r) ~Dy (r>]~ma (r - r)Z nol o ©)

where E; ) = —(B/Bt)A {r). and D (1') = eoe(wJ)E (1') The sum over the ratio of
the velocities is unity [5] demonstrating that A('r) and —D(r) are con_]ugate variables
in analogy with the vacuum situation (in the Coulomb ‘gauge). In (9) & ‘(r — 1) is the
‘transverse delta-function [9] involving the Cartesian coordinates / and i’ The emergence of
the group and phase velocities in this manner has important consequences as regards their
interaction with electrons.

The interaction of electrons with these polariton modes is now described. As a specific
-example, phonon-polaritons are considered, although the arguments apply to other types of
_polaritons, (e.g. plasmon-polaritons and coupled phonon/plasmon—polantons) via a suitable
redeﬁnmon of the dielectric functlon The appropriate dielectric function here is

(@) = €nlw® — 02)/(@® — &3). ' (10)

In the above € is the high-frequency dielectric constant with . and wry the zone-centre LO
and TO optical phonon frequencies. The dispersion relation obtained by substituting (10) into
- (2) is well known [1] and consists of a ‘photon-like” upper branch (+) and a ‘phonon-like’
" - lower branch (—) where the wavevectors of interest are of order kp = C&ré;éz fc.

The interactions of electrons with the EM wave associated with the polariton occurs via
the usual minimal coupling (¢/m*)A - p Hamiltonian, with m* the effective mass and p the
momentum of the electton. Explicit evaluation leads to the result that the scattering rate
- I}, calculated via Fermi’s golden rule, is then proportional to
1 u(g’ ’
wj€(w;) vu WP

(1)

l"j-oc
Typical scattering wavevectors are of the order [10] ¢ = Q@m*wr/M)'? ~ 0.4 x 10%k;
hence for these wavevectors, the scattering from the lower branch is negligible since
vs 1 |

£ -0 (within a few- ko). 12
v (o) " "
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We can also show that the interaction of eiectrons with the ‘photon-like” upper branch is
negligible too, but for different reasons. In this case, for typical scattering wavevectors,
the ratio of the velocities is unity, €(w;) =~ €x and wy = 0.4 x 10°@r. The argument
involving vy and v, transparently leads to the conclusion that electron energy relaxation
via the emission of bulk polaritons may safely be ignored. By contrast as we show below,
the asymptopic properties of v; and v, are drastically different in the context of interface
polaritons leading to significant contribution to the relaxation rates.

3. Interaction of electrons with interface polaritons

The formalism developed in the previous section can now be applied to the interface
polaritons of a layered system. It is well known that such a system may support a rich
spectrurn of polariton excitations, both guided and interface modes [2,3]. The guided
modes interact with electrons only very weakly for precisely the same reasons as given
for the bulk modes in section 2. On the other hand, the interface modes, often referred to
in the literature as Fuchs—Kiewer (FK) modes [11] certainly cannct be ignored as is now
demonstrated.

As a concrete example, the formalism developed in section 2 will be extended in order
to describe the interaction of electrons in a GaAs/AlAs double heterojunction (DH). In what
follows labels 1 and 2 refer to AlAs (|z| > d/2) and GaAs (Jz| < d/2) respectively, with
d the well width. It is assumed that each region may be described adequatc]y by its bulk
dielectric function, viz.

(@) = exi(0f; — M) /(0f; —0®)  i=1,2 (13)

with €,; the high-frequency dielectric constant, and wy; and wyy the zone centre LO and TO
phonon frequencies of material /. The dispersion relation of these FK interface polaritons is
simply obtained by applying standard electromagnetic boundary conditions at the interfaces
and seeking decaying solutions on either side of the boundaries, This dispersion relation is
expressible as [2,3,11]

(w)q  [—coth(gd/) ()

= 14
€1(w)q2 — tanh(g,d/2) (A} ()

where S and A denote symmetric and antisymmetric solutions, the labelling of the modes
being consistent with that of other investigations such as those of Wendler [12] and Mori
and Ando [13]. In the above the wavevectors g; are given by

g =qf - @)/? i=12 (13}

with gy the wavevector in the plane. For the wavevectors of interest in transport, which are
well away from the light-line, it is safe to consider the so-called unretarded limit (g; = qy)
although, initially, the discussion is kept general. Both regions of the dispersion curve are
depicted in figure 1.

It is now straightforward to quantize these modes. The electric field is written in
quantized form

Byr) = f [Eo; (ay) expliqy - m)a; (@) + Hel &g (16)
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Figure 1. The four rx interface polariton branches in a GaAs/AlAs DH. The relevant parameters -
are o) = 50.09 meV, hwry = 44.838 meV, koo = 36.25 meY, otz = 3329 meV,
€01 = 8.18, €502 = 10.89 where 1 (2) refers to AlAs. (GaAs). The inset to the Agure shows
the small g; region of the dispersion curves in the vicinity of the light-line for 4 = 1 m. The
horizontal scale is in units of wrz/c. The labels § () refer o the symmemc (antisymmetric)
modes.

where, of course, now we sum over the in-plane wavevector g, which is the conserved
wavevector by symmetry, and 7| is the in-plane coordinate. The index j now refers to either
the antisymmetric (A) or symmetric (S) branch. The magnetic field operator is obtainable
from (16) using (5} and hence the total energy of the modes can again be determined from
(1). On expressing this in canonical form, the mode amplitudes Eg; are evaluated. The
concern here is with the electron—interface polariton interaction, so only the vector potennal
A('r) is quoted

A(r) = “IZ f [Ao;(an) exp(lqu Ty )aj (qy) —HC] & @ - a7

In equation (17) the amplitudﬁ; is given b_y _

_ : 12 ‘
heo; u N
A”"z{an_‘)ze;"@} R +56,0) S €
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where the carets denote unit vectors. The structure factors F; (z) and G;(z) are written in
the following concise form:

F5(z) = [exp(q12)la cosh{g2z)/ cosh(g2d /2)] exp(—g12)] (19)
Fa(z) = [—exp(q12)|a sinh(gaz)/ sinh(gad /2)| exp(~412)] (20)
Gs(z) = (—ig)/q1)[exp(q12)|aq sinh(g22) /g2 cosh(gad /2)] — exp(—q12)] 2
Gal2) = (—igy/q1)— exp(gizYlaqi cosh(gez) /g2 sinh(g2d /2)| — exp(—g17)] (22)

with @ = exp{—q¢1d/2) and the vertical bars represent the left boundary (at z = —d/2)

and the right boundary (at z = d/2) of the DH. Dg) is the energy normalization factor
originating from the E? term in (1) and is given by

(#)]
DEJ =—§j

(23)

w?exp(—qud)del(w) v’ | cosech®(qyd/2)  j=s
alw) o | sech(gyd/2)

In equation {23), g; is 1 if j =S and —1 if j = A. The group and phase velocmes are of
course deﬁned for the surface polaritons in terms of the in-plane wavevector (vp = w;/q

and vg = [dew/3¢)u=v,). The group velocity of the modes can be determined analytically
from the dispersion relation and are found to be given by

5 del(w;) | cosech®(qyd/2) j=8
) = ZE1M7 :
it 2E (wy) {—sechz(qudﬂ) j=a @4
with
2
B) = 610722 — ()12, 25)

In figure 2 the ratio |vg/vp] is plotted as a function of the in-plane wavevector. It is seen
from the figure that the dependence of this ratio on wavevector is not too different for the
various interface modes. At large wavevectors the ratios fall off rather stowly; on the other
hand, for small wavevectors, there is a rapid fall-off. For intermediate values, these ratios
attain a maximum around gyd = 1, which is often near the wavevector regime of interest
in the electron-interface mode interaction.

The analysis is now taken further by calculating the electron-interface mode interaction
(some results have recently been presented elsewhere [14]). The rates are calculated via the
golden rule (assuming that only emission is possible):

i =3 [ day [ @Hikianin () AP oIk ONPSE ~ B —hay)  G6)

with i and f standing for the initial and final states. The ket [&;) represents that of an electron
with in-plane momentum %k, whilst the ket {gyj}) describes a polariton of momentum
hqy of branch j. The electron states are assumed for simplicity to be those obtained
from an infinite confining potential, although for the low-lying states this assumption is
not too severe. Hence, on simple symmetry considerations, intersubband transitions will
only involve the antisymmetric FK modes whereas only symmetric FK modes contribute to
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Flgure 2. \Varation of Jvg/vp] with ¢yd for the symmetric 'FK modes (curves a) and the
antisymmetric FK modes {curves b). The full curves con'espond to the ‘AlAs-like” modes and
_ the broken curves to the *‘GaAs-like” modes. .

. intrasubband scattering For intersubband scattering where the electron initially resides at the

bottom of the second subband (kf{” =0) the integrations involved in (26) are straightforward
1eadmg 1o : : '

TCa 3 2 | 2 Ey -"- A"
T, = () cosh (qud/?) coth™{grd/ 2)[ }(zmz"’mdz)

\ €52 = €co2 Jr2+q 242 9r2+q d?

with E, = hz 2/ 2mid?. The quantity o characterizes the strength of the electron—LO
' phonon mteractlon in the bulk (~8 x 102 s‘1 for GaAs):

GZ(COA) Ué‘”

) A
61 (@) o

@n

- To = (% /dmeoh) (1 /€cos — 1/652)_(2m2m/h)'/2. ' (28)

Of course, g in (27) satisfies both the dispersion relation and conservation of energy and
there are two branches which may contribute: an ‘AlAs-like” antisymmetric branch and
a ‘GaAs-like’ antisymmetric branch (see figure 1). In figure 3 the intersubband rate is
depicted as a function of well width. The ‘AlAs-like’ contribution is seen to dominate for
all well thicknesses d, especially around 180 A where a pronounced resonance is predicted
[14]. The reason for this is easily seen with reference to equation (27) as follows. As the
well width increases, the rate increases due to a decrease in g;. As the in-plane wavevector
decreases further, the frequency of the ‘AlAs-like’ antisymmetric branch tends to wri,
whence |¢;(w)] — oo reversing the earlier trend. In other words, when the mode frequency
approaches the TO phonon frequency of AlAs, the rate vanishes, as indeed it should. It
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shouid be emphasized that this resonance in the intersubband rate is not due to retardation
effects, but rather to the dispersion of the mode, or more precisely, to its finite group velocity
in the non-retarded region of the dispersion curve (figure 1). This resonance is absent if
dispersion is ignored. No such resonance is predicted for the *GaAs-like’ contribution as
here the limiting frequency is that of the LO mode of GaAs. The intersubband rate for the
‘GaAs-like” antisymmetric mode increases until the subband separation equals the energy
of the GaAs LO phonon (corresponding to a well width of around 220 A). For larger well
widths, the electron has insufficient energy to emit these modes.

1 025
— - Total

w——-  AlAs -like 020

1.4
F/I?,1‘2 015
10 r/I
08 010

06
0.4 005

02
00 Q00

Figure 3. Intra- (left-hand axis) and inter- {right-hand axis) subband transition rates by emission
of FK antisymmetric modes and their variation with well width d.

No analytic resuits are available for the intrasubband rates with the integrations involved
in (26) having to be evaluated numerically. Figure 3 also illustrates the variation of the
intrasubband scattering rate as a function of well width for a fixed initial electron energy of
Zhwrs. Again the “AlAs-like’ symmetric branch dominates, especially at small well widths.
This result has recently been demonstrated by the Raman resuits of Tsen ¢f ¢/ [15]. In order
to make a quantitative comparison with these results the theory needs to be taken further, for
example by taking into account the finite depth of the well, and, more 1mportantly, effects
due to non~equ1hbnum phonons.

4. Discussion and conclusions
The aim of this paper has been to demonstrate that the interactions of electrons with the

polariton modes can be presented in a unifying manner irrespective of whether they occur
in bulk or lower-dimensional systems. For bulk systems, the interaction of electrons with
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these modes occurs via the (e/m*)A - p minimal coupling Hamiltonian, but the strengths
are so weak that they may safely be ignored. The reason for this, as explained in section
2, is intimately related to the group and phase velocities of the modes and the behaviour of
the dielectric function at the wavevector regimes encountered in transport. The interaction
of electrons with interface FK modes employed here was again (e/m*)..i «p, in order to
connect with the bulk results of section 2. Other investigators, for example Wendler [12]
and Mori and Ando [13] couple the modes via a scalar potential coupling e¢ analogons to
“the Frohlich interaction of the L0 modes. The use of this type of interaction for polaritons
has recently been questioned [16, 17). The results obtained by this scalar potential method
are equivalent to those reported here and a simple argument will demonstrate this.
In the non-retarded limit the vector potential A may be written as

o A @ VE=—Gme | 29
hence ' - _ .
{e/m*)p - A = (ie/w)dk - ve . (30)

where . is the group velocity of the electron and k the wavevector of Lhe mode. For the
interactions of interest k- v, is the frequency of the emitted mode and hence the e coupling
is recovered. Nevertheless, the essence of their interactions with electrons stems from the
properties of their group velocities, their phase velocities, and the dielectric functions of
the media, just as it does for bulk polaritons. No such comparison can be made between
these FK interface modes and bulk LO phonons. The interaction of electrons with butk and
confined LO phonons via the Frohlich interaction is of course strong, but it cannot be for
exactly the same reasons. In the case of the long-wavelength LO modes €(w) = 0, and their
group velocity also vanishes (in the often used Einstein model). A simple derivation of
the Frohlich interaction for longitudinal modes with equation (1) as the starting point has
recently been reported by one of the present authors [18].
In conclusion, a simple quantization procedure for polaritons has been presented whlch
-is applicable to any system in which a simple dielectric function is adequate. The group
velocity is shown to be of importance from the outset, and the commutation relation (9)
recently obtained by Huttner ef ! [5] is recovered. The interaction of electrons with bulk
 polaritons is shown to be negligible from simple considerations. These same considerations
when applied to layered systems lead to the result that the fields associated with surface
polaritons cannot be ignored in any calculations of electron energy relaxation, despite the
fact that their coupling to electrons has precisely the same interaction Hamiltonian as that
of bulk polariton modes. This is a consequence of the behaviour of the group and phase
velacities and the dielectric functions at the large wavevectors of interest.

A note of caution must now be made. Microscopic models {19-22] and macroscopic
ones [23-26] demonstrate that the ‘GaAs-like’ interface mode is not a pure interface mode
but is strongly hybridized with the LO modes. This is not the case for the important ‘AlAs-
like’ mode [19]. The reason for this is that the dispersion of the LO phonons in AiAs is
too weak to allow hybridization over the whole frequency range of the interface modes.
Hybrids occur only in the frequency range occupied by LO modes. Hybrid behaviour
has been ignored here as it has been in other investigations [12, 13] although Ridley [24]
has recently calculated electron—optical phonon scattering rates for hybrid modes with

~ frequencies in the ‘GaAs-like’ region of the dispersion curves. As has recently been
emphasized [26] a macroscopic model which incorporates hybrid effects and accurately
compares with microscopic displacements and frequencies is usefil in order to avoid heavy
computation,
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Note added in proof. ’I;hc equivalence in the nor-retarded limit of the A and ¢ formalisms discussed in section 4
has recently been demonstrated mote rigorously via a unitary transformation (M Babiker, N C Constantinou and
B K Ridley Phys. Rev. B at press).
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